
 MVS Details

 This chapter aims to give a brief overview of the internal workings of MVS,
which it is essential for all systems programmers to understand. There are
many courses on MVS internals, which will go into much more detail than I can
cover here, and I would strongly recommend that any aspiring systems
programmer attend a series of these courses. Perhaps the greatest problem
with most of the available courses, however, is that they go into too much
detail too soon. The newcomer can easily be overwhelmed with the detail, and
fail to appreciate the bigger picture to which the details belong. I hope that my
brief overview can show that bigger picture, so you can then go on to fill in the
details more confidently!
 In addition to formal courses and IBM manuals, you will find lots of
articles on MVS internals in the technical journals - systems programmers seem
to like nothing more than poking around in the bowels of MVS and telling other
systems programmers about it! Some of these articles are listed in the
Bibliography at the end of this chapter. The ultimate source, of course, is the
source code of MVS itself. Once upon a time this was freely available to MVS
customers, but sadly IBM is now implementing an "object code only" policy, so
the source code available is rapidly shrinking. If you're an accomplished
assembler programmer who has grasped the basics of MVS internals you may
find some illumination in the bits of source code that are still available, but it's
more likely that you will have to rely on the written and spoken word.
There is one concept of general application with which you need to be familiar
before delving into MVS internals - that is, the use of control blocks and control
block chains in MVS. Control blocks are areas of storage in predetermined
formats, which are used to describe MVS resources and processes. The formats
of all MVS control blocks are described in detail in "MVS/ESA Diagnosis: Data
Areas" (five volumes as at MVS/ESA 3.1.3), or in the "Debugging Handbook" (up
to six volumes) for earlier versions of MVS.
 Control blocks are linked together in logical chains using pointers. A
pointer is a field in the control block, which contains the address of the linked
control block. Most MVS control blocks can be located by following a series of
pointers starting from the CVT (Communications Vector Table), which itself is
always pointed to by the address at offset 16 (hex 10) within the PSA. When a
chain of control blocks needs to be constructed (e.g. to represent a queue of
outstanding requests for a resource), each control block in the chain will
usually contain a forward pointer to the next one and a backward pointer to
the one before it. Figure 3.1 shows a typical usage of control block pointers -
to find the chain of task control blocks (TCBs) belonging to a selected address
space. Control blocks and chaining are discussed in more detail in chapter 6.

The rest of this chapter is divided into sections, each one corresponding to one
functional area of MVS.

Section - Storage Management

1 Virtual Storage and Real Storage

 MVS stands for Multiple Virtual Storage, which is a fair indication of how
crucial the concept of Virtual Storage is to MVS!
 Virtual storage is the ability of units of work to refer to areas of storage
using addresses which are meaningful to the unit of work, but do not
correspond to the actual location of the data concerned in real storage (also
known as "central storage"). Furthermore, different units of work can use the
same "virtual address" to refer to different real storage locations. This is one of
several aspects of the design of MVS, which allow applications to run as if they
had sole use of the machine even though in reality they are sharing it with
other applications.
 Each of these units of work, then, has a range of virtual storage locations,
which it can address. This range of virtual storage locations is known as an
"address space". Each address space can include virtual storage with addresses
in the range from zero to 2 Gigabytes (2048 Megabytes, or something over 2
billion characters of storage), and there can be literally hundreds of address
spaces active within MVS at any one time. Most System/370 computers,

however, have far less real storage available to them than this - a typical 3090,
for example, might have 128 Megabytes of real storage.
 MVS therefore has to provide a mechanism to translate virtual addresses
into real addresses when an item of data needs to be accessed, and another
one to extend the amount of storage, which can be addressed beyond that
which is physically available in real memory. These two mechanisms are known
as "Dynamic Address Translation" (DAT) and "paging" respectively. Figure 3.2
summarizes the relationship between real and virtual storage, which is
implemented by these mechanisms.

 Whenever a program makes a reference to a virtual storage address,
either to fetch data from it or to store date into it, it is necessary to translate
that address into a real storage address before the processor can find and
access the area of storage in question. The DAT hardware does this
automatically, so that there is no software overhead required for virtual
address translation.
 In order to make this possible, MVS must maintain tables in storage which
relate each address space's virtual storage addresses to real storage addresses,
and which are accessible to the DAT routines. The first of these is the "segment
table". MVS maintains a separate segment table for each address space, at a
fixed location in real storage, and loads the address of the current address

space's segment table into the Segment Table Origin Register, one of the
control registers which is inaccessible to application programmers, but used for
system functions. The segment table contains an entry for each 1 Megabyte
segment of the address space's virtual storage. If the address space is not using
that megabyte at all, there is an indicator to this effect, and any attempt to
resolve a virtual address in that segment will result in a protection exception
(this will appear to the user as an 0C4 abend). If the segment is in use,
however, the segment table entry will contain the address of a "page table" for
that segment. The page table in turn contains an entry for each 4K page in the
segment. If the page is unused the corresponding page table entry will contain
an indicator to this effect; if it has been paged out a different indicator will be
set; and if it is present in real storage it will contain the real storage address of
the page. The DAT process is illustrated in Figure 3.3 below.

 The sizes of a page and a segment are significant because they allow the
DAT hardware to do some very simple and therefore very fast table look-ups - if
we think of a 32-bit address as a string of eight hex digits, then the first three
of these represent the segment number of the area being addressed, and can
be used as an argument to look up the address of the page table in the segment
table; the next two digits then represent the page number within the segment,
and can be used as the argument to directly look up the real address of the

required page from the page table. The last three digits can then be used
simply as the offset into this real page frame of the required address.
 To speed up the DAT process even further, the results of recent address
translations are stored in the Translation Look aside Buffer (TLB), which the
DAT routines check before attempting the full translation process. The high
degree of "locality of reference" in most programs means that a high proportion
of address translations can be resolved from the TLB. The efficiency of these
design features means that the DAT hardware can locate the real storage
corresponding to any virtual address extremely quickly, thus allowing MVS to
implement virtual storage with very little address translation overhead.
 Although Dynamic Address Translation is a hardware process, MVS has to
maintain the environment, which DAT relies on. Thus, MVS must:
* Create and keep up to date the segment table for each address space, which
contains pointers to the page tables for that address space
* Ensure that the address of the new address space's segment table is stored in
the STOR whenever the current address space changes
* Ensure that the segment table itself is in a fixed area of storage (i.e. it
cannot be paged out, or address translation would be impossible)
* Create and keep up to date the page tables.

2 Paging

 In order to provide vastly more virtual storage than the amount of real
storage that exists on the machine being used, MVS uses "paging". When real
storage fills up, and an address space requires another page of virtual storage,
the paging process swings into action. Simplifying somewhat, the Real Storage
Manager (RSM) component of MVS identifies the 4K pages of storage which have
not been referenced for the longest time, invokes the Auxiliary Storage
Manager (ASM) component to copy these into 4K "slots" in paging datasets on
DASD (a "page out" operation), then "steals" one of the pages which have been
made available to satisfy the new requirement. If a program subsequently
attempts to reference the stolen page, a "page fault" occurs, and the ASM is
invoked to "page in" the required page, stealing another page frame to provide
the necessary real storage.
 In effect, then, the inactive pages of each address space are moved out of
real storage onto auxiliary storage, and only the active pages (i.e. relatively
recently used ones) are kept in real storage. The real storage, which each
address space retains, is known as its "working set". Typically working sets are
much smaller than the amount of virtual storage which the address space has
initialized with GETMAIN instructions, as a large proportion of each address
space's storage is used for routines and data which are very rarely referenced.
This means that the amount of paging which is necessary to provide large
address spaces to many users in a relatively small amount of real storage can
be quite low as only each user's working set need be kept in real storage, even
when many users are active concurrently.

 Let us look in a little more detail at the process by which RSM manages
real storage.
 Every "interval" (an interval is around a second when the pressure on real
storage is high, but it is lengthened - up to around 20 seconds - when it is not),
RSM checks the status of each frame of real storage. Each frame has a few
bytes of control information associated with it (this is not addressable storage
in the normal sense), including the "hardware reference bit". Whenever a page
is referenced, the hardware sets this bit on; if the bit is on when RSM checks it,
it resets the value of the Unreferenced Interval Count (UIC) for this page to
zero, and turns off the reference bit; if it is off, RSM increments the UIC for
the page by one. These UICs (held in a table called the Page Frame Table)
therefore indicate how many intervals it was since each page was last
referenced.
RSM also maintains an Available Frame Queue (AFQ), which is a list of pages
available for stealing. When the number of pages on the AFQ falls below a
predetermined limit, RSM scans the PFT for the pages with the highest UICs. It
then attempts to add these to the AFQ. If the page has been paged out before
and has not been updated since (there is another hardware bit associated with
every real frame which is set whenever a page is updated), it can immediately
be placed on the AFQ. If it has not been paged out before, or has been updated
since it was last paged out, then RSM will invoke the ASM to page it out again,
and when this is complete the frame will be placed on the AFQ. This process is
intended to ensure that when a page frame needs to be stolen, there will
already be a copy of it on auxiliary storage, so the page-in can be started
immediately, without waiting for the frame to be paged out first.
 A frame may need to be stolen to provide new pages to an address space
(in response to a GETMAIN request) or to provide space for a page in. When a
frame is stolen, the corresponding entry in the page table is updated, removing
the address of the real storage frame it was using, and inserting an indicator
that the page is on auxiliary storage. If DAT subsequently attempts to resolve a
reference to this page of virtual storage it will encounter this indicator and
issue a "page fault" exception. ASM will then be invoked to page in the required
page.
 The RSM and ASM components between them are therefore able to use
the paging mechanism to share the available real storage between conflicting
requirements for virtual storage in such a way as to minimize the performance
degradation which results when a DASD I/O is required to resolve a page-fault.
If paging becomes excessive, however, this degradation can become
unacceptably high, and there is then a requirement for tuning of the system. If
this cannot resolve the problem it is then necessary to increase the amount of
real storage available to the system.
 The pressure on real storage is increased by the ability of MVS to make
some pages "immune" to paging using a mechanism known as "page-fixing". This
mechanism marks a page so that RSM will never select it for stealing, with the
result that it cannot be paged out. While this runs counter to the basic
philosophy of virtual storage, it is essential in some circumstances. When an

I/O operation is to be performed, for example, the channel subsystem will
read/write data from/to a real storage location, not a virtual storage location
(see the section on I/O Management below). It is therefore necessary for MVS
to prevent the real storage location required by the I/O operation being stolen
by RSM before the I/O operation has completed. It does this by fixing the
page(s) concerned for the duration of the I/O operation, then un-fixing them
after the operation has completed.

3 Central Storage and Expanded Storage

 In 1985, a new type of processor storage called expanded storage was
introduced on 3090 machines, and it is now also available on ES/9000's and on
machines from the plug-compatible vendors. Expanded storage is cheaper than
central storage and much larger quantities of it can be configured on a single
machine (in theory up to 16,000 Gigabytes, although existing machines do not
support anything like this amount). However, access to expanded storage is
several orders of magnitude slower than access to central storage, although
still several orders of magnitude faster than DASD I/O or even I/O operations
which are resolved from cache memory.
 On MVS/XA systems, the only use of expanded storage was as a fast paging
device. Retrieving a page from expanded storage is almost 1000 times faster
than retrieving a page from DASD, with obvious performance benefits on
systems, which do any significant paging. The paging process works a little
differently with expanded storage. A process, which takes a page fault and
resolves it from expanded storage does not relinquish control of the processor
or suffer an I/O interrupt, which also contributes to improving performance.
 With MVS/ESA, however, further uses of expanded storage were
introduced, notably methods of keeping large amounts of data in expanded
storage using data spaces and/or hyperspaces (these are discussed in more
detail in the last part of this chapter). These effectively turn expanded storage
into a very fast caching device for important or heavily used application data.
 Like central storage, expanded storage is likely to fill up at some stage,
and MVS must manage this situation. It does this by "migrating" pages from
expanded storage to paging datasets on "auxiliary storage" (i.e. DASD).
Unfortunately, at the time of writing, page migration requires the page to be
moved from expanded storage to central storage before it can be paged out to
DASD, which clearly imposes an additional bottleneck when page migration is
required. However, it seems likely that IBM will address this problem in future
developments.
 MVS selects pages to be migrated by reviewing the "old page bit"
associated with each page of expanded storage. The process works as follows:
* It starts initially from the first page in expanded storage and scans forward
through the pages
* When it finds a page, which is allocated, it sets the old page bit (this will be
turned off again when the page is referenced)

* When it finds a page with the old page bit set, it knows that this page has not
been referenced since the last time it was scanned, so it steals it
* When it has stolen enough pages it stops, but retains a pointer to the last
page scanned, and the next time it starts a scan it will start it from this point
* When it reaches the last page it goes back to the first one again.
This is a simple, fast, and effective process.

4 Attributes of Virtual Storage Areas

 Within each address space, different areas of virtual storage have
different attributes and uses. The main attributes, which vary between
different areas, are:
* Common versus private
* Above or below the 16 Megabyte line
* Storage protection
 Common areas are areas in which any given virtual address is translated
to the same real address in every address space. This means that the virtual
storage at these addresses is shared between all address spaces, and any unit
of work can address the data in these areas. Apart from the PSA, the common
areas are all in a contiguous area of virtual storage, which starts and ends on 1
Megabyte boundaries. This is because 1 Megabyte is the size of a segment - i.e.
the amount of storage described by a single page table - and common storage is
implemented by sharing the same page tables between all address spaces. In
other words, for the common segments, the entry in each address space's
segment table points to the same page table.
 Private areas, on the other hand, are areas in which any given virtual
address is translated to a different real address in every address space, so any
virtual storage at these addresses is unique to the address space concerned and
can normally only be addressed by tasks running in that address space. Each
address space has its own page tables for its own private areas.
 The 16 Megabyte line is only significant because of the continuing
requirement for compatibility with programs written to run under MVS Version
1, referred to below as MVS/370. Under MVS/370, a 24-bit addressing scheme
was used, and 16 megabytes was the maximum virtual address that could be
referenced with a 24-bit address. Programs written under MVS/370 could
therefore only address virtual storage up to this limit. In order to allow such
programs to run, MVS/XA and MVS/ESA still support a 24-bit addressing mode,
although MVS is also now capable of supporting 31-bit addressing (allowing
virtual storage up to 2 Gigabytes to be addressed). As many programs still run
in 24-bit mode, all storage areas, which may need to be referenced by
programs running in this mode, must continue to be kept below the 16
Megabyte line. Most of the storage areas we will discuss are now split into two
parts, one above and one below the line, so that they can satisfy this
requirement, while keeping as many areas as possible above the line. There is a
strong incentive to put data above the line, as the major reason for the
introduction of MVS/XA was to relieve the shortage of virtual storage addresses

below 16 Megabytes, and this shortage can still pose problems for 24-bit
programs.
 Storage protection restricts the ability of programs to fetch or update
storage. Each frame of real storage has a "key" associated with it, and access to
the page is restricted to users with a matching "storage protect key" in their
PSW. If the storage is "fetch-protected", users without a matching key cannot
even read it; if it is not, users without a matching key can read but not update
it. Typically common areas have a key, which prevents ordinary applications
from updating them, while private areas are updatable by anyone (but only
addressable by work executing within the address space concerned!).

5 Areas of Virtual Storage

 Figure 3.4 shows the main areas of virtual storage, which are briefly
discussed in turn below.

The main areas of virtual storage are:
* PSA - Prefixed Save Area - from 0 to 4K - in a uniprocessor this is fixed in the
first 4K of both virtual and real storage, but in a multiprocessor there is a
separate PSA for each processor and a control register called the "prefix
register" contains the address of the processor's PSA. The PSA contains certain

areas, which are critical to MVS and the hardware, such as the new PSWs to be
used for processing interrupts, and the pointer to the CVT control block, from
which most of the MVS control block structure, can be traced.
* Private area - the bottom limit of this is at 4K; the top limit is set at IPL time
and is determined by deducting the size of the common areas below the 16 Mb
line from 16Mb and rounding down to a megabyte boundary. This is the area
available to user programs executing in 24-bit mode, and also includes some
system areas which relate specifically to this address space, such as the SWA
(Scheduler Work Area, containing control blocks relating to the executing job),
and the LSQA (Local System Queue Area, containing control blocks for this
address space, including the segment table and private area page tables).
* CSA - Common Service Area - contains control blocks and data used primarily
for communicating between address spaces. Tasks such as VTAM, which must
pass data between address spaces often, use large amounts of buffer space in
CSA. The size of the CSA is specified at IPL time.
* LPA - Link Pack Area - contains program modules to be shared between
address spaces, including many system routines such as SVCs and access
methods. Programs in the LPA cannot normally be modified between IPLs. The
size of the LPA depends on the number and size of the modules loaded into it
at IPL time. It is divided into Fixed, Pageable, and Modifiable areas (FLPA,
PLPA, and MLPA), of which the PLPA is usually by far the largest. The LPA is
discussed in more detail in the Program Management section below.
* SQA - System Queue Area - contains control blocks, which need to be shared
between address spaces, e.g. the page tables for common areas. The size is
fixed at IPL time, but if the system runs out of SQA it will use CSA instead.
* Nucleus - this contains the core of the MVS control program itself, including
certain tables such as the page frame table (PFT) and the UCBs (unit control
blocks) for I/O devices. Its size depends on the configuration of your system,
but does not vary once it has been loaded at IPL time.
* The extended nucleus, SQA, LPA, CSA, and private area perform the same
functions as the corresponding areas below the line, and their sizes are
determined in the same way (note that programs in the LPA are loaded above
or below the line depending on their "residency mode", which is determined at
assembly or link-edit time). The only difference is that programs running in 31-
bit addressing mode can only address them.

6 Swapping

 Swapping is similar to paging (which is sometimes called "demand paging"
to distinguish it from swapping) in that its objective is to reduce the usage of
real storage by moving less-used areas of virtual storage out to disk. It is also
used to reduce the size of the queues used by the dispatcher by removing
"swapped-out" tasks from them.
 Swapping, however, is unlike demand paging in that it deals with entire
address spaces instead of individual pages. When a decision is made to
physically swap an address space, all of the virtual storage belonging to that

address space is paged out (in large blocks known as "swap sets") and the
frames it was using are added to the available frame queue.
 Swapping is controlled by the component of MVS called the System
Resources Manager (SRM); there is a complex set of algorithms used by SRM
which determines when address spaces should be swapped out and in, and
selects the address spaces to be swapped. Systems programmers (or members
of your performance tuning team) define parameters which are used by SRM to
determine the swap priority of each address space and the conditions in which
swapping should occur. The details of these parameters are extremely complex
and beyond the scope of this book. The general principles, however, are simple
- when the machine is so busy that it cannot provide sufficient real storage to
meet the requirements of the most important executing tasks, lower priority
tasks should be swapped out, and the machine's resources should be distributed
between the competing workloads in accordance with their relative
importance. This is what the SRM attempts to achieve.
There is also a form of swapping known as logical swapping, which removes
inactive tasks from the dispatching queues and thus speeds up the dispatching
process. In this case, the storage belonging to the address space is not swapped
out immediately, but if there is pressure on real storage, the logical swap may
subsequently be converted to a physical swap. It is normal for TSO users to be
logically swapped at the end of each transaction, to minimize the system
overhead they cause during the relatively long "think time" until they next
press the "Enter" key.

Task Management

1 Dispatchable Units of Work

 The MVS "dispatcher" is a routine within the "Supervisor" component of the
operating system which determines which units of work will be allowed to
execute next - i.e. given control of the processor until the next interrupt
occurs. It maintains queues of dispatchable units of work, each with an
associated priority (dispatching priorities are independent of swap priorities),
and whenever the dispatcher is given control it selects the highest priority
ready unit of work to dispatch.
Control blocks of two types represent dispatchable units of work - Task control
blocks (TCBs) and Service request blocks (SRBs). TCBs represent tasks executing
within an address space, such as user programs - but note that there are
several TCBs associated with each address space, so more than one task could
be running in any one address space at any one time. SRBs represent "requests
to execute a service routine" - they are usually initiated by system code
executing from one address space to perform an action affecting another
address space.
 TCBs are created when a program issues the ATTACH macro to initiate a
new task. While it is possible for an application to do this, it is more commonly
done by system code. When an address space is created, a chain of TCBs is also
created within it. The first of these is the Region Control Task, followed by the
Dump task and the Started Task Control task. Beyond here, the task structure
depends on the type of address space, of which there are three:
* console-started jobs (commonly known as "started tasks") - these have a TCB
for the started job
* batch jobs - these run in JES "initiator" address spaces, with one TCB for the
initiator itself and another for the current JOB STEP
* TSO users - these have a TCB for the TSO terminal monitor program - an
address space is created for each TSO user at logon time by the TCAS address
space
 SRBs are created using the SCHEDULE macro, but can only be created by
units of work running in the supervisor state and key 0 (see the section on
storage protection and execution states below for further explanation of these
terms). There are two types - SRBs with "global priority", which have a very
high dispatching priority, and SRBs with "local priority", which take on the
dispatching priority of the address space in which they are scheduled to run.
SRBs are "non-preemptive", which means that if they are interrupted, control
must be returned to them immediately after the interruption has been
processed. In addition, they are subject to a number of restrictions. For
example, they can only GETMAIN storage in sub pool 245 (SQA), and they
cannot issue SVCs, which means, for example, that they cannot open datasets,
or issue ENQ's. This is to prevent them from going into a wait for any avoidable
reason, and means that SRBs usually represent very short pieces of work, which
complete much more quickly than TCB's.

 SRB's have the ability to SUSPEND or RESUME TCB's in their address space;
and they can be scheduled by a function in one address space to execute in
another address space. They therefore provide a mechanism by which one
address space can control the execution of tasks in another address space.

2 The Dispatching Process

 The dispatching process shares the processor cycles available to the
system between the TCBs and SRBs, which are waiting to execute at any one
time. The key elements of the dispatching process are the PSW, interrupts, and
the dispatching queue.
 The PSW (or, more accurately, the "current PSW") is a special-purpose
register within the processor which indicates the address of the next
instruction to be executed, along with certain status information such as the
current storage protect key, whether the program is running in supervisor or
problem state, the addressing mode, and whether the processor is enabled or
disabled for certain types of interrupt. After each instruction to be executed
has been fetched, the PSW is updated to point to the next one to be executed.
If a unit of work is interrupted to allow some other unit of work to run, the
PSW must be saved so that when the original unit of work is restarted the
processor can pick up where it left off by reloading the PSW that was current
at the time of the interruption. Of course, other information must also be
restored to its status at the time of the interruption, notably the values in the
general-purpose registers being used by the program.
 Interrupts are a hardware feature, which was introduced, in the last
chapter. They are signals to the processor, which pre-empt the currently
executing unit of work and initiate a different process. Interrupts can be
generated by a number of different events, including completion of an I/O
request, hardware-detected program errors, and program requests for
supervisor services (Supervisor Calls, or SVCs). There are six main types of
interrupts, and for each of these there is a corresponding "First Level Interrupt
Handler" (FLIH) routine, "old PSW" field in the PSA, and "new PSW" field in the
PSA. When an interrupt occurs, the hardware saves the current PSW in the "old
PSW" field for the type of interrupt concerned, disables the processor for
further interrupts of the same type, (if possible - some types of interrupt
cannot be disabled) and loads the PSW from the "new PSW" field for the type of
interrupt concerned. The new PSW contains the instruction address of the first
instruction of the corresponding FLIH; so loading it causes the FLIH to be
invoked. The FLIH saves the status (registers and old PSW) of the interrupted
unit of work, enables the processor for interrupts again, and determines the
action required to process the interrupt. It may then directly invoke the system
routines required to process the interrupt, or schedule these for later
execution and return control to the dispatcher.
 The dispatching queues are chains of control blocks representing address
spaces and units of work. The ASCB ready queue is a chain of the Address Space
Control Blocks (ASCBs) of those address spaces, which are swapped in and

contain at least one TCB or SRB, which is ready to execute (i.e. not awaiting
the completion of any other event). The ASCBs are chained together in priority
order - i.e. the ASCB with the highest dispatching priority is at the front of the
chain. Each address space then has its own chain of ready SRBs and/or TCBs,
pointed to from its ASCB. Whenever an event completes which changes the
status of an address space, the relevant MVS function updates the dispatching
queues to reflect it.
 Whenever control is returned to the dispatcher after a unit of work has
terminated or been interrupted, it selects the highest priority unit of work that
is ready to execute. There are some special exit routines dealing, for example,
with hardware recovery, which will always be dispatched before any other unit
of work, but in more usual situations, the dispatcher will first select any SRBs
which have global priority, and then will select the ASCB at the front of the
dispatching queue (i.e. the one with the highest priority). Any ready SRBs
within this address space will be selected, and if there are none of these, any
ready TCBs within it will be selected. If there is no work ready to execute, the
dispatcher loads an "enabled wait PSW", otherwise it builds a PSW for the
selected unit of work and loads it.
 Whatever routine is given control will continue to execute until it is
interrupted or relinquishes control (e.g. by ending or issuing an SVC).

3 Storage protection and execution states

 The functions a routine can perform are constrained by its execution
state, as defined in the control bits of the current PSW, and its storage protect
key, which is also part of the PSW.
 The storage protect key can take any value from 0 to 8. A function
running with storage protect key zero can update any storage except areas in
"page protected" pages (these pages cannot be updated by any function). A
function running with any other storage protect key (i.e. 1 to 8) can only
update pages with a matching storage key (every page has a storage key
associated with it, which is stored in one of the byes of non-addressable
storage associated with every page, and can also take the values 0 to 8). In
addition, a page can be "fetch-protected". A page that is not fetch-protected
can be read by any function, irrespective of the function's key, though it can
only be updated by a function running in key 0 or with a matching key. A page,
which is fetch-protected, can only be read by a function running in key 0 or
with a matching key. Any attempt to breach any of these rules causes the
function to be abended with abend code 0C4.
 The execution state of a unit of work can be either "problem state" or
"supervisor state". "Problem state" is the normal mode of execution for
application programs, and in this mode certain machine instructions may not
be executed (these are known as "privileged instructions"), such as those,
which change the PSW, or the storage protect key. This prevents application
programs from interfering with the system itself and from bypassing system
security products such as RACF. "Supervisor state", on the other hand, is the

normal mode of execution for system routines, which allows them to execute
any System/370 instruction. Most programs running in supervisor state also run
in storage protect key zero.
 Clearly it is necessary for MVS to provide a mechanism to switch the
processor from problem state to supervisor state, and to change the current
storage protect key. Equally clearly, it is necessary to restrict the ability of
programs to use this mechanism, or there would be no point in making the
distinction between problem and supervisor state in the first place, as any
clever programmer could switch their code into supervisor state. The
mechanism, which MVS uses to achieve this, is called APF authorization (APF
stands for Authorized Program Facility). Only an APF authorized program may
issue the MODESET macro that is used to switch execution states and change
the storage protect key. In order to be APF authorized, the program must have
been loaded from an APF authorized library and link-edited with an
authorization code of 1. As anyone can link-edit a program with AC (1), it is
one of the systems programmer's responsibilities to ensure that the ability to
put programs into APF-authorized libraries and execute them from there is
strictly controlled (it is usually restricted to the systems programmers
themselves).

4 I/O Management

 The previous chapter discussed the various types of I/O devices, which
can be connected to System/370 processors, and some details of how I/O
operations are handled at the device level. Here we will look at the processes
MVS goes through to initiate a typical DASD I/O request. As with many aspects
of MVS, there are several layers to the I/O onion! Figure 3.5 summarizes the
overall picture for a typical I/O request. Note that the sequence of events
starts at the top left, with the GET/PUT request, and then moves diagonally
down to the right until the interrupt is received by the channel subsystem to
indicate that the device and channel have completed their part in the
operation. From here, events move diagonally down back to the left hand
column. Each column from the left to right represents a successively deeper
layer of the I/O processing onion!

User Program Access
Method

EXCP IOS Channel
Subsystem

GET/PUT

Create
Channel
Program

Wait for ECB

.

Translate CP

STARTIO

Queue
Request on

I/O complete

.

.

.

.

.

.

.

.

Resume
when next
dispatched

Post ECB

Return
control to
Dispatcher

Device

SSCH

Process
Interrupt

Execute
Channel
Program

Transfer Data

Interrupt

Figure 3.5 - MVS/XA I/O Processing using EXCP

 Before the I/O process can begin, the user program must OPEN the
dataset to be accessed. The OPEN process builds the DCB (data control block),
which contains various information about the dataset, including the address of
the access method to be used to process it. It also builds a DEB (data extent
block) containing further information about how the dataset is to be processed,
including, for DASD datasets, the device address and the physical addresses of
the extents of the dataset. These control blocks are used in the processing of
subsequent I/O instructions for the dataset.
 When the program subsequently wishes to read or write a record of the
dataset, it typically invokes the GET or PUT macro (which may have been
generated by a compiler as part of the expansion of a READ or WRITE
statement in a high-level language). This results in a branch to the access
method routine whose address was saved in the DCB.
There are a variety of access methods available for processing different types
of datasets. The most widely used are:
* QSAM - for logical record processing of sequential datasets and members of
PDSs processed as sequential datasets
* BSAM - for block processing of sequential datasets
* BDAM - for direct access datasets
* BPAM - for partitioned datasets
* VSAM - for VSAM datasets
* VTAM - for telecommunications I/O

 The access method builds more control blocks - the IOB (input output
block) and the ECB (event control block). The IOB contains information
required by the next stage of the operation (EXCP processing), and pointers to
all the other control blocks associated with the I/O operation. Most
importantly, it points to the channel program. This is also built by the access
method, and consists of a series of channel command words (CCWs) which
describe the I/O operations to be performed by the channel subsystem,
including details such as the address of the area of storage into/from which
data is to be transferred and the amount of data to be transferred. Finally, the
access method issues the EXCP macro instruction, which invokes an SVC,
causing an interrupt, and the interrupt handler passes control to the EXCP
processor. The next time the access method is dispatched it will issue a WAIT
macro against the ECB representing this I/O request.
 EXCP (Execute Channel Program) builds a control block called the I/O
Supervisor Block (IOSB), fixes the page containing the storage to be
read/written by the I/O operation so that it cannot be paged out before the
operation is complete, and translates the addresses in the channel program
from virtual to real addresses, as only real addresses are meaningful to the
channel subsystem. It then invokes the STARTIO macro instruction to activate
the I/O Supervisor (IOS) to process the I/O.
 EXCP is one of several "IOS drivers" which may pass instructions to IOS.
Although in this example it is invoked from an access method, it may also be
invoked directly from JES2 or a user program, although the latter is far more
complex than using an access method. Other IOS drivers include the Auxiliary
Storage Manager (ASM), used for paging requests, the FETCH processor for
program loads, and the IOS driver components of VSAM and VTAM.
 IOS builds an IOQ (Input/output queue) control block and ORB (Operation
Request Block) describing the I/O for the channel subsystem, obtains control of
the device (i.e. preventing any other concurrent I/O requests to it) by
obtaining the relevant UCB lock (Unit control block), and then issues a SSCH
(start sub channel) instruction to request the channel subsystem to perform the
I/O operation.
 The channel subsystem executes the channel program, which causes the
requested I/O operation to occur, and it transfers the data being input(output)
into(out of) the real storage locations referred to in the channel program. It
updates control blocks including the IRB (interrupt response block), which holds
the return code from the I/O operation and can be interrogated to check
whether completion was successful or not. It then posts an I/O interrupt to
indicate the completion of the request.
 The I/O interrupt handler schedules a SRB to run the "IOS post status"
routines. These check the status of the completed I/O, invoke error recovery
routines if required, and for successful I/Os, return control to EXCP. EXCP will
POST the ECB, which was created by the access method to indicate the
completion of the I/O; the access method will therefore be made dispatchable,
and when it regains control it will resume execution, returning control to the

user program. The I/O operation is now complete and the user program can
continue processing.
 There are many variations on this process for different types of I/O
operation, but this example should be enough to make the general principles
clear.
The I/O Supervisor also deals with other conditions, which can arise in the I/O
subsystem, most notably:
* Unsolicited interrupts from devices due to a hardware error - when this
occurs repeatedly it is known as "Hot I/O", and the IOS attempts to clear it by
issuing a Clear Sub channel instruction. If this is unsuccessful, the IOS will
attempt more radical action such as "boxing" the device - i.e. forcing it offline.
* Failure of a device to respond to an I/O request - known as a "missing
interrupt". The length of time IOS should wait before dealing with a missing
interrupt condition for each type of device is specified in SYS1.PARMLIB at IPL
time. Once this time has elapsed, IOS will attempt to recover, e.g. by trying to
repeat the operation.

5 Job Management

 This section will show how MVS processes jobs by looking at the stages a
job goes through, from the time it enters the system until it is finally purged.
Strictly speaking, much of the processing of jobs is not done by MVS itself but
by a separate piece of software called the Job Entry Subsystem (JES). There
are two flavours of this available from IBM, known as JES2 and JES3. Although
JES3 was originally intended to replace JES2, it has failed to do so; there are
many more MVS sites using JES2 than JES3, and IBM has accepted that it will
need to continue supporting and enhancing both. Broadly speaking, JES handles
the processing of jobs before and after the execution stage, while MVS handles
it during execution.
 The basic stages of job processing, which we shall cover, are: job entry,
the input queue, execution, the output queue, printing, and purge.
In order to be entered into the system, the job, consisting of a stream of JCL
(Job Control Language) statements, must first be created in a machine-
readable format. Historically this would have been a deck of punched cards,
but these days it will usually be created in a dataset on DASD or in an area of
virtual storage. Job entry is invoked by passing this job stream to a JES reader -
either a card reader which is owned by JES, or more usually these days, an
"internal reader", which is a JES2 program. The TSO submit command, for
example, invokes an internal reader to pass a job stream stored in a DASD
dataset to JES.
 The job stream is passed to the JES converter program, which:
* Assigns a job number to the job (only one job with any given number may
exist on the job queues at any one time, thus giving a unique identifier to jobs
with the same job name)
* Analyzes the JCL statements
* Merges in any cataloged procedures, which they reference

* Converts the JCL into "internal text", which is meaningful to JES and the MVS
job scheduler
* Checks for syntax errors, and if it finds any, fails the job with a "JCL error",
placing it straight onto the output queue without queuing it for execution
* Invokes various user exits, if they are present, which can do further
checking/modification of the JCL
* If no errors are found, the converter stores the internal text on the "spool"
dataset and adds the job to the input queue
 JES3 also does "interpreter" processing at this stage, but we will follow
JES2's practice and leave it a little longer. Both JES2 and JES3 store the
internal text and output data belonging to jobs on the "spool" dataset, which
frequently extends to multiple volumes of DASD, and can only be accessed by
JES itself.
 There are two special internal readers called STCINRDR and TSOINRDR.
STCINRDR is used to process the JCL for START commands entered at the
operator's console, and TSOINRDR is used to process the JCL for TSO LOGON
attempts. In both cases, the master scheduler starts up a new address space to
execute the command (START or LOGON), then a routine running in the started
address space invokes JES to do conversion and interpretation of the
corresponding JCL.
 Ordinary batch jobs, however, are now placed on the input queue on the
spool dataset, where they wait to be selected for execution. Associated with
each job there are a number of control fields, which JES uses to determine
which jobs to execute when and where. The most important of these are the
JOB CLASS, usually coded on the JOB card of the JCL, and the priority, which
may be coded on a JES control card in the JCL, but is more commonly assigned
by JES on the basis of rules set in the initializations parameters by the systems
programmer.
 Batch jobs run in address spaces in which there is already an "initiator"
task running. These initiator address spaces are started by JES at system
initialisation time, using the JCL in SYS1.PROCLIB(INIT). Whenever the job
running under an initiator completes, the MVS job scheduler asks JES for
another job to run. Each initiator has one or more job classes assigned to it,
and JES will look for jobs on the input queue with the first job class assigned to
the initiator. If there are any of these, JES will select the highest priority one
to run. If there are not, JES will look for jobs in the next job class assigned to
the initiator, and so on until the list of classes assigned to this initiator is
exhausted. If this process selects no jobs, the initiator will remain idle until a
job appears on the input queue with one of these job classes.
 Once JES has passed a job to the initiator, the job enters the execution
phase. On JES2 systems, the initiator will invoke the JES2 "interpreter" to build
control blocks required by the job scheduler. On JES3 systems, this will have
been done already at job entry time.
 The next action taken by the job scheduler (JES3 may do this at an
earlier stage) is to perform "device allocation", which:
* Identifies the datasets required by the job

* Locates existing datasets (including issuing volume mount requests to the
operator when this is required)
* Allocates new datasets required to suitable volumes
* Invokes MVS serialization services through the ENQ macro (see the
Serialization section below) to prevent other jobs making conflicting requests
for the same datasets
 Finally, the initiator attaches a task to perform the program named in the
EXEC statement of the first job step. When each step completes, the initiator
task checks the completion code and starts the next step whose COND values
are consistent with the completion codes of the previous steps.
 During execution, jobs may wish to write printed or punched output. To
avoid contention for the printers and punches (which can clearly only service
one dataset at a time each), and to avoid slowing down jobs by forcing them to
wait for relatively slow I/O to these devices, such output datasets are not
allocated directly to the ultimate output device. Instead, they are allocated to
JES SYSOUT datasets (JES sub allocates space for these datasets on its "spool"
dataset). This allows print and punch datasets to be written to disk at
relatively high I/O rates, without having to wait for allocation of a real output
device, and then spun off to the printer at a later time.
 At the completion of the job, then, there will still be an entry on the JES
job queue for it, and usually there will also be a group of associated output
datasets on the JES output queue. JES usually has a number of printers
permanently allocated to it, and it selects output datasets to print off
according to various selection criteria. Although these selection criteria are
under the control of the systems programmer, they are normally set up in such
a way that datasets will only be selected for printing if their FCB, forms id,
destination, and output class match those of the available printer. Datasets for
the first output class associated with the printer will be selected for printing
first, and within output classes datasets with the highest priority will be
selected first.
 Some output datasets may be "held" - and whole output classes may be
"held" by default - which means that they will not be printed/punched until a
JES output command is used to change their status (this is often done through
SDSF). On the other hand, some output classes can be defined as "dummy"
classes, which means that as soon as any output dataset written to the class is
closed it is deleted from the spool. While this may sound strange, dummy
classes are often used to suppress the production of datasets, which are never
used by anyone but are produced as a by-product of a necessary process (e.g.
message datasets for utility programs). JES commands may also be issued to
delete ("purge") individual datasets without printing them.
 Once all the output datasets belonging to a job have been
printed/punched or deleted, JES will "purge" the job, removing all trace of it
from its queues, and making its job number and spool space available for
reuse.

	Section - Storage Management
	1 Virtual Storage and Real Storage
	2 Paging
	3 Central Storage and Expanded Storage
	4 Attributes of Virtual Storage Areas
	5 Areas of Virtual Storage
	6 Swapping

	Task Management
	1 Dispatchable Units of Work
	2 The Dispatching Process
	3 Storage protection and execution states

	4 I/O Management
	5 Job Management

