
                           MVS Details

        This chapter aims to give a brief overview of the internal workings of MVS, 
which it  is  essential  for  all  systems  programmers  to  understand.  There  are 
many courses on MVS internals, which will go into much more detail than I can 
cover  here,  and  I  would  strongly  recommend  that  any  aspiring  systems 
programmer attend a series of these courses. Perhaps the greatest problem 
with most of the available courses, however, is that they go into too much 
detail too soon. The newcomer can easily be overwhelmed with the detail, and 
fail to appreciate the bigger picture to which the details belong. I hope that my 
brief overview can show that bigger picture, so you can then go on to fill in the 
details more confidently!
        In addition to formal courses and IBM manuals, you will find lots of 
articles on MVS internals in the technical journals - systems programmers seem 
to like nothing more than poking around in the bowels of MVS and telling other 
systems  programmers  about  it!  Some  of  these  articles  are  listed  in  the 
Bibliography at the end of this chapter. The ultimate source, of course, is the 
source code of MVS itself. Once upon a time this was freely available to MVS 
customers, but sadly IBM is now implementing an "object code only" policy, so 
the  source  code  available  is  rapidly  shrinking.  If  you're  an  accomplished 
assembler programmer who has grasped the basics of MVS internals you may 
find some illumination in the bits of source code that are still available, but it's 
more likely that you will have to rely on the written and spoken word.
There is one concept of general application with which you need to be familiar 
before delving into MVS internals - that is, the use of control blocks and control 
block  chains  in  MVS.  Control  blocks are  areas  of  storage  in  predetermined 
formats, which are used to describe MVS resources and processes. The formats 
of all MVS control blocks are described in detail in "MVS/ESA Diagnosis: Data 
Areas" (five volumes as at MVS/ESA 3.1.3), or in the "Debugging Handbook" (up 
to six volumes) for earlier versions of MVS. 
        Control blocks are linked together in logical chains using pointers. A 
pointer is a field in the control block, which contains the address of the linked 
control block. Most MVS control blocks can be located by following a series of 
pointers starting from the CVT (Communications Vector Table), which itself is 
always pointed to by the address at offset 16 (hex 10) within the PSA. When a 
chain of control blocks needs to be constructed (e.g. to represent a queue of 
outstanding  requests  for  a  resource),  each  control  block  in  the  chain  will 
usually contain a forward pointer to the next one and a backward pointer to 
the one before it. Figure 3.1 shows a typical usage of control block pointers - 
to find the chain of task control blocks (TCBs) belonging to a selected address 
space. Control blocks and chaining are discussed in more detail in chapter 6.



The rest of this chapter is divided into sections, each one corresponding to one 
functional area of MVS.

Section  - Storage Management

1 Virtual Storage and Real Storage

        MVS stands for Multiple Virtual Storage, which is a fair indication of how 
crucial the concept of Virtual Storage is to MVS!
        Virtual storage is the ability of units of work to refer to areas of storage 
using  addresses  which  are  meaningful  to  the  unit  of  work,  but  do  not 
correspond to the actual location of the data concerned in real storage (also 
known as "central storage"). Furthermore,  different units of work can use the 
same "virtual address" to refer to different real storage locations. This is one of 
several aspects of the design of MVS, which allow applications to run as if they 
had sole use of the machine even though in reality they are sharing it with 
other applications.
        Each of these units of work, then, has a range of virtual storage locations, 
which it can address. This range of virtual storage locations is known as an 
"address space". Each address space can include virtual storage with addresses 
in the range from zero to 2 Gigabytes (2048 Megabytes, or something over 2 
billion characters of storage), and there can be literally hundreds of address 
spaces  active  within  MVS  at  any  one  time.  Most  System/370  computers, 



however, have far less real storage available to them than this - a typical 3090, 
for example, might have 128 Megabytes of real storage. 
        MVS therefore has to provide a mechanism to translate virtual addresses 
into real addresses when an item of data needs to be accessed, and another 
one to extend the amount of storage, which can be addressed beyond that 
which is physically available in real memory. These two mechanisms are known 
as "Dynamic Address Translation" (DAT) and "paging" respectively. Figure 3.2 
summarizes  the  relationship  between  real  and  virtual  storage,  which  is 
implemented by these mechanisms.

        Whenever a program makes a reference to a virtual storage address, 
either to fetch data from it or to store date into it, it is necessary to translate 
that  address  into  a  real  storage address  before the processor  can find and 
access  the  area  of  storage  in  question.  The  DAT  hardware does  this 
automatically,  so  that  there  is  no  software  overhead  required  for  virtual 
address translation.
        In order to make this possible, MVS must maintain tables in storage which 
relate each address space's virtual storage addresses to real storage addresses, 
and which are accessible to the DAT routines. The first of these is the "segment 
table". MVS maintains a separate segment table for each address space, at a 
fixed location in real storage, and loads the address of the current address 



space's  segment  table  into  the  Segment  Table  Origin  Register,  one  of  the 
control registers which is inaccessible to application programmers, but used for 
system functions. The segment table contains an entry for each 1 Megabyte 
segment of the address space's virtual storage. If the address space is not using 
that megabyte at all, there is an indicator to this effect, and any attempt to 
resolve a virtual address in that segment will result in a protection exception 
(this  will  appear  to  the  user  as  an  0C4  abend).  If  the  segment  is  in  use, 
however, the segment table entry will contain the address of a "page table" for 
that segment. The page table in turn contains an entry for each 4K page in the 
segment. If the page is unused the corresponding page table entry will contain 
an indicator to this effect; if it has been paged out a different indicator will be 
set; and if it is present in real storage it will contain the real storage address of 
the page. The DAT process is illustrated in Figure 3.3 below.

        The sizes of a page and a segment are significant because they allow the 
DAT hardware to do some very simple and therefore very fast table look-ups - if 
we think of a 32-bit address as a string of eight hex digits, then the first three 
of these represent the segment number of the area being addressed, and can 
be used as an argument to look up the address of the page table in the segment 
table; the next two digits then represent the page number within the segment, 
and can be used as the argument to directly look up the real address of the 



required page from the page table. The last  three digits  can then be used 
simply as the offset into this real page frame of the required address.
        To speed up the DAT process even further, the results of recent address 
translations are stored in the Translation Look aside Buffer (TLB), which the 
DAT routines check before attempting the full  translation process. The high 
degree of "locality of reference" in most programs means that a high proportion 
of address translations can be resolved from the TLB. The efficiency of these 
design  features  means  that  the  DAT  hardware  can  locate  the  real  storage 
corresponding to any virtual address extremely quickly, thus allowing MVS to 
implement virtual storage with very little address translation overhead.
        Although Dynamic Address Translation is a hardware process, MVS has to 
maintain the environment, which DAT relies on. Thus, MVS must:
* Create and keep up to date the segment table for each address space, which 
contains pointers to the page tables for that address space
* Ensure that the address of the new address space's segment table is stored in 
the STOR whenever the current address space changes
*  Ensure that  the segment table itself  is  in  a fixed area of  storage (i.e.  it 
cannot be paged out, or address translation would be impossible)
* Create and keep up to date the page tables.

2 Paging

        In order to provide vastly more virtual storage than the amount of real 
storage that exists on the machine being used, MVS uses "paging". When real 
storage fills up, and an address space requires another page of virtual storage, 
the paging process swings into action. Simplifying somewhat, the Real Storage 
Manager (RSM) component of MVS identifies the 4K pages of storage which have 
not  been  referenced  for  the  longest  time,  invokes  the  Auxiliary  Storage 
Manager (ASM) component to copy these into 4K "slots" in paging datasets on 
DASD (a "page out" operation), then "steals" one of the pages which have been 
made  available  to  satisfy  the  new requirement.  If  a  program subsequently 
attempts to reference the stolen page, a "page fault" occurs, and the ASM is 
invoked to "page in" the required page, stealing another page frame to provide 
the necessary real storage.
        In effect, then, the inactive pages of each address space are moved out of 
real storage onto auxiliary storage, and only the active pages (i.e. relatively 
recently  used ones)  are kept  in real  storage.  The real  storage,  which each 
address space retains, is known as its "working set". Typically working sets are 
much smaller than the amount of virtual storage which the address space has 
initialized with GETMAIN instructions,  as a large proportion of each address 
space's storage is used for routines and data which are very rarely referenced. 
This  means  that  the  amount  of  paging  which  is  necessary  to  provide  large 
address spaces to many users in a relatively small amount of real storage can 
be quite low as only each user's working set need be kept in real storage, even 
when many users are active concurrently.



        Let us look in a little more detail at the process by which RSM manages 
real storage. 
        Every "interval" (an interval is around a second when the pressure on real 
storage is high, but it is lengthened - up to around 20 seconds - when it is not), 
RSM checks the status of each frame of real storage. Each frame has a few 
bytes of control information associated with it (this is not addressable storage 
in the normal sense), including the "hardware reference bit". Whenever a page 
is referenced, the hardware sets this bit on; if the bit is on when RSM checks it, 
it resets the value of the Unreferenced Interval Count (UIC) for this page to 
zero, and turns off the reference bit; if it is off, RSM increments the UIC for 
the page by one. These UICs (held in a table called the Page Frame Table) 
therefore  indicate  how  many  intervals  it  was  since  each  page  was  last 
referenced.
RSM also maintains an Available Frame Queue (AFQ), which is a list of pages 
available for stealing. When the number of pages on the AFQ falls below a 
predetermined limit, RSM scans the PFT for the pages with the highest UICs. It 
then attempts to add these to the AFQ. If the page has been paged out before 
and has not been updated since (there is another hardware bit associated with 
every real frame which is set whenever a page is updated), it can immediately 
be placed on the AFQ. If it has not been paged out before, or has been updated 
since it was last paged out, then RSM will invoke the ASM to page it out again, 
and when this is complete the frame will be placed on the AFQ. This process is 
intended to ensure that  when a page frame needs to be stolen,  there will 
already be a copy of it  on auxiliary storage, so the page-in can be started 
immediately, without waiting for the frame to be paged out first.
        A frame may need to be stolen to provide new pages to an address space 
(in response to a GETMAIN request) or to provide space for a page in. When a 
frame is stolen, the corresponding entry in the page table is updated, removing 
the address of the real storage frame it was using, and inserting an indicator 
that the page is on auxiliary storage. If DAT subsequently attempts to resolve a 
reference to this page of virtual storage it will encounter this indicator and 
issue a "page fault" exception. ASM will then be invoked to page in the required 
page.
        The RSM and ASM components between them are therefore able to use 
the paging mechanism to share the available real storage between conflicting 
requirements for virtual storage in such a way as to minimize the performance 
degradation which results when a DASD I/O is required to resolve a page-fault. 
If  paging  becomes  excessive,  however,  this  degradation  can  become 
unacceptably high, and there is then a requirement for tuning of the system. If 
this cannot resolve the problem it is then necessary to increase the amount of 
real storage available to the system.
        The pressure on real storage is increased by the ability of MVS to make 
some pages "immune" to paging using a mechanism known as "page-fixing". This 
mechanism marks a page so that RSM will never select it for stealing, with the 
result  that  it  cannot  be  paged  out.  While  this  runs  counter  to  the  basic 
philosophy of virtual storage, it is essential in some circumstances. When an 



I/O operation is  to be performed, for example,  the channel  subsystem will 
read/write data from/to a real storage location, not a virtual storage location 
(see the section on I/O Management below). It is therefore necessary for MVS 
to prevent the real storage location required by the I/O operation being stolen 
by RSM before the I/O operation has  completed.  It  does  this  by  fixing the 
page(s) concerned for the duration of the I/O operation, then un-fixing them 
after the operation has completed.

3 Central Storage and Expanded Storage

        In 1985, a new type of processor storage called expanded storage was 
introduced on 3090 machines, and it is now also available on ES/9000's and on 
machines from the plug-compatible vendors. Expanded storage is cheaper than 
central storage and much larger quantities of it can be configured on a single 
machine (in theory up to 16,000 Gigabytes, although existing machines do not 
support anything like this  amount).  However, access to expanded storage is 
several orders of magnitude slower than access to central storage, although 
still several orders of magnitude faster than DASD I/O or even I/O operations 
which are resolved from cache memory.
        On MVS/XA systems, the only use of expanded storage was as a fast paging 
device. Retrieving a page from expanded storage is almost 1000 times faster 
than  retrieving  a  page  from  DASD,  with  obvious  performance  benefits  on 
systems,  which do any significant  paging.  The paging  process  works  a little 
differently with expanded storage. A process,  which takes a page fault and 
resolves it from expanded storage does not relinquish control of the processor 
or suffer an I/O interrupt, which also contributes to improving performance. 
        With  MVS/ESA,  however,  further  uses  of  expanded  storage  were 
introduced, notably methods of keeping large amounts  of  data in expanded 
storage using  data  spaces  and/or  hyperspaces  (these are discussed in more 
detail in the last part of this chapter). These effectively turn expanded storage 
into a very fast caching device for important or heavily used application data.
        Like central storage, expanded storage is likely to fill up at some stage, 
and MVS must manage this  situation. It  does this  by "migrating"  pages from 
expanded  storage  to  paging  datasets  on  "auxiliary  storage"  (i.e.  DASD). 
Unfortunately, at the time of writing, page migration requires the page to be 
moved from expanded storage to central storage before it can be paged out to 
DASD, which clearly imposes an additional bottleneck when page migration is 
required. However, it seems likely that IBM will address this problem in future 
developments.
        MVS selects  pages  to  be  migrated by reviewing  the "old  page bit" 
associated with each page of expanded storage. The process works as follows:
* It starts initially from the first page in expanded storage and scans forward 
through the pages
* When it finds a page, which is allocated, it sets the old page bit (this will be 
turned off again when the page is referenced)



* When it finds a page with the old page bit set, it knows that this page has not 
been referenced since the last time it was scanned, so it steals it
* When it has stolen enough pages it stops, but retains a pointer to the last 
page scanned, and the next time it starts a scan it will start it from this point
* When it reaches the last page it goes back to the first one again. 
This is a simple, fast, and effective process.

4 Attributes of Virtual Storage Areas

        Within  each address  space,  different  areas of  virtual  storage have 
different  attributes  and  uses.  The  main  attributes,  which  vary  between 
different areas, are:
* Common versus private
* Above or below the 16 Megabyte line
* Storage protection
        Common areas are areas in which any given virtual address is translated 
to the same real address in every address space. This means that the virtual 
storage at these addresses is shared between all address spaces, and any unit 
of work can address the data in these areas. Apart from the PSA, the common 
areas are all in a contiguous area of virtual storage, which starts and ends on 1 
Megabyte boundaries. This is because 1 Megabyte is the size of a segment - i.e. 
the amount of storage described by a single page table - and common storage is 
implemented by sharing the same page tables between all address spaces. In 
other  words,  for  the  common segments,  the  entry  in  each  address  space's 
segment table points to the same page table.
        Private areas, on the other hand, are areas in which any given virtual 
address is translated to a different real address in every address space, so any 
virtual storage at these addresses is unique to the address space concerned and 
can normally only be addressed by tasks running in that address space. Each 
address space has its own page tables for its own private areas.
        The 16 Megabyte line is  only significant  because of  the continuing 
requirement for compatibility with programs written to run under MVS Version 
1, referred to below as MVS/370. Under MVS/370, a 24-bit addressing scheme 
was used, and 16 megabytes was the maximum virtual address that could be 
referenced  with  a  24-bit  address.  Programs  written  under  MVS/370  could 
therefore only address virtual storage up to this limit. In order to allow such 
programs to run, MVS/XA and MVS/ESA still support a 24-bit addressing mode, 
although  MVS is  also  now capable  of  supporting  31-bit  addressing  (allowing 
virtual storage up to 2 Gigabytes to be addressed). As many programs still run 
in  24-bit  mode,  all  storage  areas,  which  may  need  to  be  referenced  by 
programs  running  in  this  mode,  must  continue  to  be  kept  below  the  16 
Megabyte line. Most of the storage areas we will discuss are now split into two 
parts,  one  above  and  one  below  the  line,  so  that  they  can  satisfy  this 
requirement, while keeping as many areas as possible above the line. There is a 
strong  incentive  to  put  data  above  the  line,  as  the  major  reason  for  the 
introduction of MVS/XA was to relieve the shortage of virtual storage addresses 



below  16  Megabytes,  and  this  shortage  can  still  pose  problems  for  24-bit 
programs.
        Storage protection restricts the ability of programs to fetch or update 
storage. Each frame of real storage has a "key" associated with it, and access to 
the page is restricted to users with a matching "storage protect key" in their 
PSW. If the storage is "fetch-protected", users without a matching key cannot 
even read it; if it is not, users without a matching key can read but not update 
it. Typically common areas have a key, which prevents ordinary applications 
from updating them, while private areas are updatable by anyone (but only 
addressable by work executing within the address space concerned!).

5 Areas of Virtual Storage

        Figure 3.4 shows the main areas of virtual storage, which are briefly 
discussed in turn below. 

The main areas of virtual storage are:
* PSA - Prefixed Save Area - from 0 to 4K - in a uniprocessor this is fixed in the 
first  4K of both virtual  and real storage,  but in a multiprocessor  there is  a 
separate  PSA  for  each  processor  and  a  control  register  called  the  "prefix 
register" contains the address of the processor's PSA. The PSA contains certain 



areas, which are critical to MVS and the hardware, such as the new PSWs to be 
used for processing interrupts, and the pointer to the CVT control block, from 
which most of the MVS control block structure, can be traced.
* Private area - the bottom limit of this is at 4K; the top limit is set at IPL time 
and is determined by deducting the size of the common areas below the 16 Mb 
line from 16Mb and rounding down to a megabyte boundary. This is the area 
available to user programs executing in 24-bit mode, and also includes some 
system areas which relate specifically to this address space, such as the SWA 
(Scheduler Work Area, containing control blocks relating to the executing job), 
and the  LSQA (Local  System Queue Area,  containing  control  blocks  for  this 
address space, including the segment table and private area page tables).
* CSA - Common Service Area - contains control blocks and data used primarily 
for communicating between address spaces. Tasks such as VTAM, which must 
pass data between address spaces often, use large amounts of buffer space in 
CSA. The size of the CSA is specified at IPL time.
*  LPA  -  Link  Pack  Area  -  contains  program modules  to  be  shared  between 
address  spaces,  including  many  system  routines  such  as  SVCs  and  access 
methods. Programs in the LPA cannot normally be modified between IPLs. The 
size of the LPA depends on the number and size of the modules loaded into it 
at IPL time. It  is  divided into Fixed, Pageable, and Modifiable areas (FLPA, 
PLPA, and MLPA), of which the PLPA is usually by far the largest. The LPA is 
discussed in more detail in the Program Management section below.
* SQA - System Queue Area - contains control blocks, which need to be shared 
between address spaces, e.g. the page tables for common areas. The size is 
fixed at IPL time, but if the system runs out of SQA it will use CSA instead.
* Nucleus - this contains the core of the MVS control program itself, including 
certain tables such as the page frame table (PFT) and the UCBs (unit control 
blocks) for I/O devices. Its size depends on the configuration of your system, 
but does not vary once it has been loaded at IPL time.
* The extended nucleus, SQA, LPA, CSA, and private area perform the same 
functions  as  the  corresponding  areas  below  the  line,  and  their  sizes  are 
determined in the same way (note that programs in the LPA are loaded above 
or below the line depending on their "residency mode", which is determined at 
assembly or link-edit time). The only difference is that programs running in 31-
bit addressing mode can only address them.

6 Swapping

        Swapping is similar to paging (which is sometimes called "demand paging" 
to distinguish it from swapping) in that its objective is to reduce the usage of 
real storage by moving less-used areas of virtual storage out to disk. It is also 
used to reduce the size of the queues used by the dispatcher  by removing 
"swapped-out" tasks from them.
        Swapping, however, is unlike demand paging in that it deals with entire 
address  spaces  instead  of  individual  pages.  When  a  decision  is  made  to 
physically swap an address space, all of the virtual storage belonging to that 



address  space  is  paged out  (in  large  blocks  known as  "swap sets")  and  the 
frames it was using are added to the available frame queue.
        Swapping is  controlled by the component of MVS called the System 
Resources Manager (SRM); there is a complex set of algorithms used by SRM 
which determines  when address  spaces  should be swapped out  and in,  and 
selects the address spaces to be swapped. Systems programmers (or members 
of your performance tuning team) define parameters which are used by SRM to 
determine the swap priority of each address space and the conditions in which 
swapping should occur. The details of these parameters are extremely complex 
and beyond the scope of this book. The general principles, however, are simple 
- when the machine is so busy that it cannot provide sufficient real storage to 
meet the requirements of the most important executing tasks, lower priority 
tasks should be swapped out, and the machine's resources should be distributed 
between  the  competing  workloads  in  accordance  with  their  relative 
importance. This is what the SRM attempts to achieve.
There is also a form of swapping known as logical swapping, which removes 
inactive tasks from the dispatching queues and thus speeds up the dispatching 
process. In this case, the storage belonging to the address space is not swapped 
out immediately, but if there is pressure on real storage, the logical swap may 
subsequently be converted to a physical swap. It is normal for TSO users to be 
logically  swapped  at  the  end  of  each  transaction,  to  minimize  the  system 
overhead they cause  during  the  relatively  long  "think  time"  until  they  next 
press the "Enter" key.



Task Management

1 Dispatchable Units of Work

       The MVS "dispatcher" is a routine within the "Supervisor" component of the 
operating  system which determines  which  units  of  work  will  be allowed to 
execute  next  -  i.e.  given  control  of  the  processor  until  the  next  interrupt 
occurs.  It  maintains  queues  of  dispatchable  units  of  work,  each  with  an 
associated priority (dispatching priorities are independent of swap priorities), 
and whenever  the dispatcher  is  given control  it  selects  the highest  priority 
ready unit of work to dispatch.
Control blocks of two types represent dispatchable units of work - Task control 
blocks (TCBs) and Service request blocks (SRBs). TCBs represent tasks executing 
within  an  address  space,  such  as  user  programs  -  but  note  that  there  are 
several TCBs associated with each address space, so more than one task could 
be running in any one address space at any one time. SRBs represent "requests 
to  execute  a  service  routine"  -  they  are  usually  initiated  by  system  code 
executing  from  one  address  space  to  perform  an  action  affecting  another 
address space.
        TCBs are created when a program issues the ATTACH macro to initiate a 
new task. While it is possible for an application to do this, it is more commonly 
done by system code. When an address space is created, a chain of TCBs is also 
created within it. The first of these is the Region Control Task, followed by the 
Dump task and the Started Task Control task. Beyond here, the task structure 
depends on the type of address space, of which there are three:
* console-started jobs (commonly known as "started tasks") - these have a TCB 
for the started job
* batch jobs - these run in JES "initiator" address spaces, with one TCB for the 
initiator itself and another for the current JOB STEP
* TSO users - these have a TCB for the TSO terminal  monitor program - an 
address space is created for each TSO user at logon time by the TCAS address 
space
        SRBs are created using the SCHEDULE macro, but can only be created by 
units of work running in the supervisor state and key 0 (see the section on 
storage protection and execution states below for further explanation of these 
terms). There are two types - SRBs with "global priority", which have a very 
high  dispatching  priority,  and SRBs  with  "local  priority",  which  take  on the 
dispatching priority of the address space in which they are scheduled to run. 
SRBs are "non-preemptive", which means that if they are interrupted, control 
must  be  returned  to  them  immediately  after  the  interruption  has  been 
processed.  In  addition,  they  are  subject  to  a  number  of  restrictions.  For 
example,  they  can  only  GETMAIN  storage  in  sub  pool  245  (SQA),  and  they 
cannot issue SVCs, which means, for example, that they cannot open datasets, 
or issue ENQ's. This is to prevent them from going into a wait for any avoidable 
reason, and means that SRBs usually represent very short pieces of work, which 
complete much more quickly than TCB's.



         SRB's have the ability to SUSPEND or RESUME TCB's in their address space; 
and they can be scheduled by a function in one address space to execute in 
another  address  space.  They  therefore  provide  a  mechanism by  which  one 
address space can control the execution of tasks in another address space.

2 The Dispatching Process

        The dispatching process shares the processor cycles available to the 
system between the TCBs and SRBs, which are waiting to execute at any one 
time. The key elements of the dispatching process are the PSW, interrupts, and 
the dispatching queue.
        The PSW (or, more accurately, the "current PSW") is a special-purpose 
register  within  the  processor  which  indicates  the  address  of  the  next 
instruction to be executed, along with certain status information such as the 
current storage protect key, whether the program is running in supervisor or 
problem state, the addressing mode, and whether the processor is enabled or 
disabled for certain types of interrupt. After each instruction to be executed 
has been fetched, the PSW is updated to point to the next one to be executed. 
If a unit of work is interrupted to allow some other unit of work to run, the 
PSW must be saved so that when the original  unit  of work is  restarted the 
processor can pick up where it left off by reloading the PSW that was current 
at  the time of  the interruption.  Of  course,  other  information must  also  be 
restored to its status at the time of the interruption, notably the values in the 
general-purpose registers being used by the program.
        Interrupts are a hardware feature, which was introduced, in the last 
chapter.  They  are  signals  to  the  processor,  which  pre-empt  the  currently 
executing  unit  of  work  and  initiate  a  different  process.  Interrupts  can  be 
generated by a number of  different events,  including completion of  an I/O 
request,  hardware-detected  program  errors,  and  program  requests  for 
supervisor  services  (Supervisor  Calls,  or  SVCs).  There  are  six  main  types  of 
interrupts, and for each of these there is a corresponding "First Level Interrupt 
Handler" (FLIH) routine, "old PSW" field in the PSA, and "new PSW" field in the 
PSA. When an interrupt occurs, the hardware saves the current PSW in the "old 
PSW"  field  for  the  type  of  interrupt  concerned,  disables  the  processor  for 
further  interrupts  of  the  same type,  (if  possible  -  some types  of  interrupt 
cannot be disabled) and loads the PSW from the "new PSW" field for the type of 
interrupt concerned. The new PSW contains the instruction address of the first 
instruction  of  the  corresponding  FLIH;  so  loading  it  causes  the  FLIH  to  be 
invoked. The FLIH saves the status (registers and old PSW) of the interrupted 
unit of work, enables the processor for interrupts again, and determines the 
action required to process the interrupt. It may then directly invoke the system 
routines  required  to  process  the  interrupt,  or  schedule  these  for  later 
execution and return control to the dispatcher.
        The dispatching queues are chains of control blocks representing address 
spaces and units of work. The ASCB ready queue is a chain of the Address Space 
Control  Blocks  (ASCBs)  of  those  address  spaces,  which  are  swapped in  and 



contain at least one TCB or SRB, which is ready to execute (i.e. not awaiting 
the completion of any other event). The ASCBs are chained together in priority 
order - i.e. the ASCB with the highest dispatching priority is at the front of the 
chain. Each address space then has its own chain of ready SRBs and/or TCBs, 
pointed to from its ASCB. Whenever an event completes which changes the 
status of an address space, the relevant MVS function updates the dispatching 
queues to reflect it.
        Whenever control is returned to the dispatcher after a unit of work has 
terminated or been interrupted, it selects the highest priority unit of work that 
is ready to execute. There are some special exit routines dealing, for example, 
with hardware recovery, which will always be dispatched before any other unit 
of work, but in more usual situations, the dispatcher will first select any SRBs 
which have global priority, and then will select the ASCB at the front of the 
dispatching  queue  (i.e.  the  one with  the  highest  priority).  Any  ready  SRBs 
within this address space will be selected, and if there are none of these, any 
ready TCBs within it will be selected. If there is no work ready to execute, the 
dispatcher  loads  an  "enabled  wait  PSW",  otherwise  it  builds  a  PSW for  the 
selected unit of work and loads it.
        Whatever routine is given control will continue to execute until it is 
interrupted or relinquishes control (e.g. by ending or issuing an SVC).

3 Storage protection and execution states

        The functions a routine can perform are constrained by its execution 
state, as defined in the control bits of the current PSW, and its storage protect 
key, which is also part of the PSW.
        The storage protect key can take any value from 0 to 8. A function 
running with storage protect key zero can update any storage except areas in 
"page protected" pages (these pages cannot be updated by any function). A 
function  running  with  any  other  storage  protect  key (i.e.  1  to  8)  can only 
update  pages  with  a  matching  storage  key  (every  page  has  a  storage  key 
associated  with  it,  which  is  stored  in  one  of  the  byes  of  non-addressable 
storage associated with every page, and can also take the values 0 to 8). In 
addition, a page can be "fetch-protected". A page that is not fetch-protected 
can be read by any function, irrespective of the function's key, though it can 
only be updated by a function running in key 0 or with a matching key. A page, 
which is fetch-protected, can only be read by a function running in key 0 or 
with a matching key. Any attempt to breach any of these rules causes  the 
function to be abended with abend code 0C4. 
        The execution state of a unit of work can be either "problem state" or 
"supervisor  state".  "Problem  state"  is  the  normal  mode  of  execution  for 
application programs, and in this mode certain machine instructions may not 
be  executed  (these  are  known  as  "privileged  instructions"),  such  as  those, 
which change the PSW, or the storage protect key. This prevents application 
programs from interfering with the system itself  and from bypassing system 
security products such as RACF. "Supervisor state", on the other hand, is the 



normal mode of execution for system routines, which allows them to execute 
any System/370 instruction. Most programs running in supervisor state also run 
in storage protect key zero.
        Clearly it is necessary for MVS to provide a mechanism to switch the 
processor from problem state to supervisor state, and to change the current 
storage protect key. Equally clearly, it is necessary to restrict the ability of 
programs to use this mechanism, or there would be no point in making the 
distinction  between problem and supervisor  state in the first  place, as  any 
clever  programmer  could  switch  their  code  into  supervisor  state.  The 
mechanism, which MVS uses to achieve this, is called APF authorization (APF 
stands for Authorized Program Facility). Only an APF authorized program may 
issue the MODESET macro that is used to switch execution states and change 
the storage protect key. In order to be APF authorized, the program must have 
been  loaded  from  an  APF  authorized  library  and  link-edited  with  an 
authorization code of 1. As anyone can link-edit a program with AC (1), it is 
one of the systems programmer's responsibilities to ensure that the ability to 
put  programs  into  APF-authorized libraries  and execute them from there is 
strictly  controlled  (it  is  usually  restricted  to  the  systems  programmers 
themselves).

4 I/O Management

        The previous chapter discussed the various types of I/O devices, which 
can  be  connected  to  System/370  processors,  and  some  details  of  how I/O 
operations are handled at the device level. Here we will look at the processes 
MVS goes through to initiate a typical DASD I/O request. As with many aspects 
of MVS, there are several layers to the I/O onion! Figure 3.5 summarizes the 
overall  picture for a typical  I/O request.  Note that the sequence of  events 
starts at the top left, with the GET/PUT request, and then moves diagonally 
down to the right until the interrupt is received by the channel subsystem to 
indicate  that  the  device  and  channel  have  completed  their  part  in  the 
operation.  From here,  events  move  diagonally  down  back  to  the  left  hand 
column. Each column from the left to right represents a successively deeper 
layer of the I/O processing onion!
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Figure 3.5 - MVS/XA I/O Processing using EXCP

        
        Before the I/O process can begin, the user program must OPEN the 
dataset to be accessed. The OPEN process builds the DCB (data control block), 
which contains various information about the dataset, including the address of 
the access method to be used to process it. It also builds a DEB (data extent 
block) containing further information about how the dataset is to be processed, 
including, for DASD datasets, the device address and the physical addresses of 
the extents of the dataset. These control blocks are used in the processing of 
subsequent I/O instructions for the dataset.
        When the program subsequently wishes to read or write a record of the 
dataset,  it  typically  invokes  the  GET or  PUT macro  (which  may  have  been 
generated  by  a  compiler  as  part  of  the  expansion  of  a  READ  or  WRITE 
statement in  a high-level  language).  This  results  in  a branch to  the access 
method routine whose address was saved in the DCB.
There are a variety of access methods available for processing different types 
of datasets. The most widely used are:
* QSAM - for logical record processing of sequential datasets and members of 
PDSs processed as sequential datasets
* BSAM - for block processing of sequential datasets
* BDAM - for direct access datasets
* BPAM - for partitioned datasets
* VSAM - for VSAM datasets
* VTAM - for telecommunications I/O



        The access method builds more control blocks - the IOB (input output 
block)  and  the  ECB  (event  control  block).  The  IOB  contains  information 
required by the next stage of the operation (EXCP processing), and pointers to 
all  the  other  control  blocks  associated  with  the  I/O  operation.  Most 
importantly, it points to the channel program. This is also built by the access 
method,  and consists  of  a  series  of  channel  command words  (CCWs)  which 
describe  the  I/O  operations  to  be  performed  by  the  channel  subsystem, 
including details such as the address of the area of storage into/from which 
data is to be transferred and the amount of data to be transferred. Finally, the 
access  method  issues  the  EXCP  macro  instruction,  which  invokes  an  SVC, 
causing  an  interrupt,  and the interrupt  handler  passes  control  to  the  EXCP 
processor. The next time the access method is dispatched it will issue a WAIT 
macro against the ECB representing this I/O request.
        EXCP (Execute Channel Program) builds a control block called the I/O 
Supervisor  Block  (IOSB),  fixes  the  page  containing  the  storage  to  be 
read/written by the I/O operation so that it cannot be paged out before the 
operation is  complete, and translates the addresses in the channel program 
from virtual to real addresses, as only real addresses are meaningful to the 
channel subsystem. It then invokes the STARTIO macro instruction to activate 
the I/O Supervisor (IOS) to process the I/O.
        EXCP is one of several "IOS drivers" which may pass instructions to IOS. 
Although in this example it is invoked from an access method, it may also be 
invoked directly from JES2 or a user program, although the latter is far more 
complex than using an access method. Other IOS drivers include the Auxiliary 
Storage  Manager  (ASM),  used  for  paging  requests,  the  FETCH processor  for 
program loads, and the IOS driver components of VSAM and VTAM.
        IOS builds an IOQ (Input/output queue) control block and ORB (Operation 
Request Block) describing the I/O for the channel subsystem, obtains control of 
the  device  (i.e.  preventing  any  other  concurrent  I/O  requests  to  it)  by 
obtaining the relevant UCB lock (Unit control block), and then issues a SSCH 
(start sub channel) instruction to request the channel subsystem to perform the 
I/O operation.
        The channel subsystem executes the channel program, which causes the 
requested I/O operation to occur, and it transfers the data being input(output) 
into(out of) the real storage locations referred to in the channel program. It 
updates control blocks including the IRB (interrupt response block), which holds 
the  return  code  from the  I/O  operation  and  can  be  interrogated  to  check 
whether completion was successful or not. It then posts an I/O interrupt to 
indicate the completion of the request.
        The I/O interrupt handler schedules a SRB to run the "IOS post status" 
routines. These check the status of the completed I/O, invoke error recovery 
routines if required, and for successful I/Os, return control to EXCP. EXCP will 
POST  the  ECB,  which  was  created  by  the  access  method  to  indicate  the 
completion of the I/O; the access method will therefore be made dispatchable, 
and when it regains control it will resume execution, returning control to the 



user program. The I/O operation is now complete and the user program can 
continue processing.
        There are many variations on this process for different types of I/O 
operation, but this example should be enough to make the general principles 
clear.
The I/O Supervisor also deals with other conditions, which can arise in the I/O 
subsystem, most notably:
*  Unsolicited  interrupts  from devices  due  to  a  hardware  error  -  when  this 
occurs repeatedly it is known as "Hot I/O", and the IOS attempts to clear it by 
issuing  a  Clear  Sub channel  instruction.  If  this  is  unsuccessful,  the IOS will 
attempt more radical action such as "boxing" the device - i.e. forcing it offline.
*  Failure  of  a  device  to  respond  to  an  I/O  request  -  known  as  a  "missing 
interrupt". The length of time IOS should wait before dealing with a missing 
interrupt condition for each type of device is specified in SYS1.PARMLIB at IPL 
time. Once this time has elapsed, IOS will attempt to recover, e.g. by trying to 
repeat the operation.

5 Job Management

        This section will show how MVS processes jobs by looking at the stages a 
job goes through, from the time it enters the system until it is finally purged. 
Strictly speaking, much of the processing of jobs is not done by MVS itself but 
by a separate piece of software called the Job Entry Subsystem (JES). There 
are two flavours of this available from IBM, known as JES2 and JES3. Although 
JES3 was originally intended to replace JES2, it has failed to do so; there are 
many more MVS sites using JES2 than JES3, and IBM has accepted that it will 
need to continue supporting and enhancing both. Broadly speaking, JES handles 
the processing of jobs before and after the execution stage, while MVS handles 
it during execution.
        The basic stages of job processing, which we shall cover, are: job entry, 
the input queue, execution, the output queue, printing, and purge.
In order to be entered into the system, the job, consisting of a stream of JCL 
(Job  Control  Language)  statements,  must  first  be  created  in  a  machine-
readable format. Historically this would have been a deck of punched cards, 
but these days it will usually be created in a dataset on DASD or in an area of 
virtual storage. Job entry is invoked by passing this job stream to a JES reader - 
either a card reader which is owned by JES, or more usually these days, an 
"internal  reader",  which  is  a  JES2  program.  The  TSO submit  command,  for 
example, invokes an internal  reader to pass a job stream stored in a DASD 
dataset to JES. 
        The job stream is passed to the JES converter program, which:
* Assigns a job number to the job (only one job with any given number may 
exist on the job queues at any one time, thus giving a unique identifier to jobs 
with the same job name)
* Analyzes the JCL statements
* Merges in any cataloged procedures, which they reference



* Converts the JCL into "internal text", which is meaningful to JES and the MVS 
job scheduler
* Checks for syntax errors, and if it finds any, fails the job with a "JCL error", 
placing it straight onto the output queue without queuing it for execution
*  Invokes  various  user  exits,  if  they  are  present,  which  can  do  further 
checking/modification of the JCL
* If no errors are found, the converter stores the internal text on the "spool" 
dataset and adds the job to the input queue
        JES3 also does "interpreter" processing at this stage, but we will follow 
JES2's  practice  and  leave  it  a  little  longer.  Both  JES2  and  JES3  store  the 
internal text and output data belonging to jobs on the "spool" dataset, which 
frequently extends to multiple volumes of DASD, and can only be accessed by 
JES itself.
        There are two special internal readers called STCINRDR and TSOINRDR. 
STCINRDR  is  used  to  process  the  JCL  for  START  commands  entered  at  the 
operator's console, and TSOINRDR is used to process the JCL for TSO LOGON 
attempts. In both cases, the master scheduler starts up a new address space to 
execute the command (START or LOGON), then a routine running in the started 
address  space  invokes  JES  to  do  conversion  and  interpretation  of  the 
corresponding JCL.
        Ordinary batch jobs, however, are now placed on the input queue on the 
spool dataset, where they wait to be selected for execution. Associated with 
each job there are a number of control fields, which JES uses to determine 
which jobs to execute when and where. The most important of these are the 
JOB CLASS, usually coded on the JOB card of the JCL, and the priority, which 
may be coded on a JES control card in the JCL, but is more commonly assigned 
by JES on the basis of rules set in the initializations parameters by the systems 
programmer.
        Batch jobs run in address spaces in which there is already an "initiator" 
task  running.  These  initiator  address  spaces  are  started  by  JES  at  system 
initialisation  time,  using  the  JCL  in  SYS1.PROCLIB(INIT).  Whenever  the  job 
running  under  an  initiator  completes,  the  MVS  job  scheduler  asks  JES  for 
another job to run. Each initiator has one or more job classes assigned to it, 
and JES will look for jobs on the input queue with the first job class assigned to 
the initiator. If there are any of these, JES will select the highest priority one 
to run. If there are not, JES will look for jobs in the next job class assigned to 
the initiator,  and so on until  the list  of  classes assigned to this  initiator is 
exhausted. If this process selects no jobs, the initiator will remain idle until a 
job appears on the input queue with one of these job classes.
         Once JES has passed a job to the initiator, the job enters the execution 
phase. On JES2 systems, the initiator will invoke the JES2 "interpreter" to build 
control blocks required by the job scheduler. On JES3 systems, this will have 
been done already at job entry time.
         The next action taken by the job scheduler (JES3 may do this at an 
earlier stage) is to perform "device allocation", which:
* Identifies the datasets required by the job



*  Locates existing datasets  (including  issuing  volume mount requests  to the 
operator when this is required)
* Allocates new datasets required to suitable volumes
*  Invokes  MVS  serialization  services  through  the  ENQ  macro  (see  the 
Serialization section below) to prevent other jobs making conflicting requests 
for the same datasets
        Finally, the initiator attaches a task to perform the program named in the 
EXEC statement of the first job step. When each step completes, the initiator 
task checks the completion code and starts the next step whose COND values 
are consistent with the completion codes of the previous steps.
        During execution, jobs may wish to write printed or punched output. To 
avoid contention for the printers and punches (which can clearly only service 
one dataset at a time each), and to avoid slowing down jobs by forcing them to 
wait  for  relatively  slow I/O to these devices,  such output datasets  are not 
allocated directly to the ultimate output device. Instead, they are allocated to 
JES SYSOUT datasets (JES sub allocates space for these datasets on its "spool" 
dataset).  This  allows  print  and  punch  datasets  to  be  written  to  disk  at 
relatively high I/O rates, without having to wait for allocation of a real output 
device, and then spun off to the printer at a later time.
        At the completion of the job, then, there will still be an entry on the JES 
job queue for it, and usually there will also be a group of associated output 
datasets  on  the  JES  output  queue.  JES  usually  has  a  number  of  printers 
permanently  allocated  to  it,  and  it  selects  output  datasets  to  print  off 
according to various selection criteria.  Although these selection criteria are 
under the control of the systems programmer, they are normally set up in such 
a way that datasets will only be selected for printing if their FCB, forms id, 
destination, and output class match those of the available printer. Datasets for 
the first output class associated with the printer will be selected for printing 
first,  and  within  output  classes  datasets  with  the  highest  priority  will  be 
selected first.
        Some output datasets may be "held" - and whole output classes may be 
"held" by default - which means that they will not be printed/punched until a 
JES output command is used to change their status (this is often done through 
SDSF).  On the other  hand,  some output  classes  can be defined as  "dummy" 
classes, which means that as soon as any output dataset written to the class is 
closed it  is  deleted from the spool.  While  this  may sound strange,  dummy 
classes are often used to suppress the production of datasets, which are never 
used by anyone but are produced as a by-product of a necessary process (e.g. 
message datasets for utility programs). JES commands may also be issued to 
delete ("purge") individual datasets without printing them.
        Once  all  the  output  datasets  belonging  to  a  job  have  been 
printed/punched or deleted, JES will "purge" the job, removing all trace of it 
from its  queues,  and  making  its  job  number  and  spool  space  available  for 
reuse.
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